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Abstract—Under mild acidic conditions, N-(x-phenylalkyl)allenamides can yield stabilized acyliminium ions which through intra-
molecular aromatic electrophilic substitution furnish 1-vinylisoindolines and isoquinolines. Stereoelectronic and entropic effects in
these cyclizations have been evaluated by DFT computations. The 1-vinylisoquinolines obtained have been employed as key inter-
mediates in the synthesis of the protoberberine skeleton.
� 2007 Elsevier Ltd. All rights reserved.
Allenamide chemistry1 has received considerable atten-
tion in recent years,2 with exploration of the reactivity
of allenamides in transition-metal catalyzed cyclization,3

[2+2] and inverse demand [4+2] cycloadditions,4 and
other cyclization reactions.5 Allenamides (3) are com-
monly prepared by a tandem reaction in which conden-
sation of propargyl bromide with a secondary amide (1)
is followed by base-catalyzed isomerization of the result-
ing propargylamide (2) (Scheme 1), although under
these conditions the resulting allenamides sometimes
evolve further to ynamides.2a Due to allylic stabilization
of the intermediates, these electron-deficient allenamines
are highly susceptible to nucleophilic, electrophilic, and
even radical addition6 at the central sp carbon atom.

In this Letter we describe a new cyclization reaction
based on the formation of an acyliminium ion7 by treat-
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Scheme 1.
ment of an appropriate allenamide with trifluoroacetic
acid. The reaction was developed and investigated using
allenamides 3a–e (Table 1), which were prepared in
50–90% overall yield by reaction of the corresponding
amines with an acylating agent followed by treatment
with propargyl bromide in the presence of a base.8

Treatment of allenamides 3 with a catalytic amount of
TFA in dichloromethane at room temperature afforded
the vinyl-substituted heterocyclic compounds 5 in mod-
erate to good yields,9 presumably through protonation
of the allenamide followed by intramolecular electro-
philic aromatic substitution on the electron-rich arene
of the resulting acyliminium ion (4) (Scheme 2). That
these reactions take place under such mild conditions
can undoubtedly be attributed to the allylic nature of
the intermediate cations 4.

In the first of these cyclizations, treatment of benzylallen-
amide 3a with a catalytic amount of TFA afforded the
Table 1. Yields in the preparation and acid-catalyzed cyclization of
allenamides 3a–e

Compound n R1 R2 % Yield of 3 % Yield of 5

a 0 MeO H 50 22
b 1 MeO H 85 67
c 1 H H 63 —
d 1 MeO 2-I-Phenyl 74 78
e 2 MeO H 81 —
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Scheme 2.

Table 2. Activation barrriers (kcal/mol) and relevant geometric parameters for the cyclization of allenamides 3a, 3b and 3e

Structure DH y0 DGy298:15 (Gas-phase) DGy298:15 (CH2Cl2)

TS-4a 15.8 17.4 17.3

TS-4b 0.9 4.4 9.0

TS-4e 7.5 12.0 18.8
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desired vinyl isoindoline 5a, but only in low yield (22%).
Much better yield was achieved with the phenethyl com-
pounds 3b and 3d, which afforded vinyl isoquinolines 5b
and 5d in 67% and 78% yield, respectively.10 That the
aromatic ring must be electron-rich was shown by the
failure of allenamide 3c to cyclize even under harsher
conditions (50% TFA, DMF, 70 �C). The homologous
compound 3e also failed to cyclize under the standard
reaction conditions, and raising the temperature to
60 �C resulted in hydrolysis to the secondary amide.

Suspecting that the differences in behaviour among
homologues 3a, 3b and 3e might be due to stereoelec-
tronic constraints in the aromatic electrophilic substitu-
tion step, we investigated this step by computing
geometries and energies for intermediates 4a,b,e and
transition structures TS-4a,b,e at the B3LYP11/6-
31+G* level. Given their cationic nature, solvation
effects were taken into account by performing B3LYP/
6-31+G* CH2Cl2 PCM12 single-point computations on
the optimized gas-phase structures (Table 2). All compu-
tations were performed using the GAUSSIANGAUSSIAN03
package.13

The computations clearly show that formation of the
six-membered ring of 5b is specially favoured by its
allowing perfect alignment of the reaction centres for
tetrahedral attack of the positively charged carbon on
the arene (H = 109.4�) in a chair-like conformation.
Thus the gas-phase activation barrier DGy298:15 is only
4.4 kcal/mol in TS-4b, as against 17.4 kcal/mol in
Scheme 3.
TS-4a with a poor alignment between reaction centres
(H = 122.1�), and 12.0 kcal/mol in TS-4e, in which
H = 109.5� but greater crowding is present due to an
unfavourable axial disposition of the amide group in
the crown-chair transition state (geometries can be
examined in Supplementary data). When solvation is
taken into account, the barriers in TS-4b and TS-4e
are increased due to 4b and 4e being more easily
solvated than the transition states, but the barrier in
TS-4a remains virtually unchanged because solvation
of 4a is also inefficient. Unfavourable entropic effects
also increase with the length of the phenylalkyl chain
of the acyliminium ions, DGy298:15 � DH y0 being 1.6, 3.5
and 4.5 kcal/mol for TS-4a, TS-4b and TS-4e,
respectively.14

Finally we observed that the tetracyclic unit of the pro-
toberberine skeleton15 ought to be easily constructed by
a 6-exo Heck reaction of an ortho-iodobenzamide such
as 5d (Scheme 3), as indeed proved to be the case. When
vinylisoquinoline 5d was heated at 100 �C in DMF in
the presence of catalytic Pd(OAc)2, K2CO3 as a base
and Et4NBr as an additive, methylene protoberberine
6d was obtained in 70% yield.16,17

In conclusion, allenamides can be used to prepare 1-
vinylisoindolines or isoquinolines via acyliminium ions
under very mild conditions. The isoquinolines can serve
as intermediates in a new synthesis of functionalized
protoberberines.
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